Алгоритм решения простых уравнений. Алгоритм решения уравнений. Решение уравнений с дробью

Проще говоря, это уравнения, в которых есть хотя бы одна с переменной в знаменателе.

Например:

\(\frac{9x^2-1}{3x}\) \(=0\)
\(\frac{1}{2x}+\frac{x}{x+1}=\frac{1}{2}\)
\(\frac{6}{x+1}=\frac{x^2-5x}{x+1}\)


Пример не дробно-рациональных уравнений:

\(\frac{9x^2-1}{3}\) \(=0\)
\(\frac{x}{2}\) \(+8x^2=6\)

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.


Алгоритм решения дробно-рационального уравнения:

    Выпишите и «решите» ОДЗ.

    Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

    Запишите уравнение, не раскрывая скобок.

    Решите полученное уравнение.

    Проверьте найденные корни с ОДЗ.

    Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.


Пример . Решите дробно-рациональное уравнение \(\frac{x}{x-2} - \frac{7}{x+2}=\frac{8}{x^2-4}\)

Решение:

Ответ: \(3\).


Пример . Найдите корни дробно-рационального уравнения \(=0\)

Решение:

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\) \(=0\)

ОДЗ: \(x+2≠0⇔x≠-2\)
\(x+5≠0 ⇔x≠-5\)
\(x^2+7x+10≠0\)
\(D=49-4 \cdot 10=9\)
\(x_1≠\frac{-7+3}{2}=-2\)
\(x_2≠\frac{-7-3}{2}=-5\)

Записываем и «решаем» ОДЗ.

Раскладываем \(x^2+7x+10\) на по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\) \(=0\)

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
\(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\) \(=0\)

Сокращаем дроби

\(x(x+5)+(x+1)(x+2)-7+x=0\)

Раскрываем скобки

\(x^2+5x+x^2+3x+2-7+x=0\)


Приводим подобные слагаемые

\(2x^2+9x-5=0\)


Находим корни уравнения

\(x_1=-5;\) \(x_2=\frac{1}{2}.\)


Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Ответ: \(\frac{1}{2}\).

Рациональные выражения и рациональные уравнения

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Алгоритм решения рационального уравнения

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Пример решения рационального уравнения

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Прошу помощи в решении уравнения с неизвестным в знаменателе: (y+5)/(y^2-5*y)-(y-5)/(2*y^2-10*y)=(y+25)/(2y^2-50) это

уравнение приведено в учебнике по алгребе за 7-й класс. Пытался решать, но постоянно приходил к каким-то совсем запутанным состояниям. Для справки: тема с подобными уравнениями идет задолго до решений квадратных уравнений, так что по идее уравнение должно решаться без сведения к квадратному уравнению. В общем, буду благодарен за показанный алгоритм решений.

В конце учебника приведен следующий ответ: 15

1)Является ли пара чисел (-3;2) решением уравнения 2x-3y=0.

2)Среди решений уравнения 3y-9x=18 найдите такое решение в котором значения переменных равны.
3)На графике уравнения 4x-5y=10 взята точка А.Найдите абсциссу точки А если её координата равна 2.
4)График функции ax+by=1 проходит через точки А(1;-2) и В(-2;7).Чему равны коэффициенты а и b? 1).a=3, б=1 2).а=1,б=3 3).а=-1,б=5 4).а=3,б=9.
5)Является ли пара чисел(-1;7) решением уравнения 23x+4y=5.
6)Среди решений уравнения x-7y=12 найдите такое решение в котором значения переменных равны.
7)На графике уравнения 12x-5y=23 взята точка С.Найдите координату точки С, если её абсцисса равна-1.

Помогите самый последний раз на сегодня №1 Какие из пар чисел (-1:1),(дробь одна вторая,дробь две пятых),(-4:1) являются решением уравнения 2х+5y-3=0

№2 Найдите значения коэффициента b в уравнении +5х+by+18=0 если известно что пара чисел (6:-4) является решением уравнения. №3 преобразуйте линейное уравнение с двумя переменными 6х-3y=3 к виду линейной функции y=rx+m

ВОПРОСЫ ПО АЛГЕБРЕ ДЛЯ ЗАЧЁТА В 8 КЛАССЕ?

1. Что такое обыкновенная дробь? Запись обыкновенной дроби. Основное свойство дроби. Привести примеры.
2. Сложение и деление обыкновенных дробей с разными знаменателями. Привести примеры.
3. Умножение и вычитание обыкновенных дробей с разными знаменателями. Привести примеры.
4. Что такое десятичная дробь? Запись десятичной дроби. Привести примеры.
5. Сложение и деление десятичных дробей. Привести примеры.
6. Умножение и вычитание десятичных дробей. Привести примеры.
7. Что такое алгебраическая дробь. Привести примеры.
8. Область определения алгебраической дроби. Привести примеры.
9. Основное свойство алгебраической дроби. Привести примеры.
10. Сложение и деление алгебраических дробей. Привести примеры.
11. Вычитание и умножение алгебраических дробей. Привести примеры.
12. Что такое степень с натуральным показателем? Степень положительного числа с любым показателем. Степень отрицательного числа с четным показателем. Степень отрицательного числа с нечетным показателем. Привести примеры.
13. Свойства степени с целым показателем. Привести примеры.
14. Что такое уравнение? Корни уравнения? Что значит решить уравнение? Привести примеры.
15. Алгоритм решения уравнений. Привести примеры.
16. Алгоритм решения дробного уравнения. Привести примеры.
17. Квадратный корень. Арифметический квадратный корень. Привести примеры.
18. Свойства арифметического квадратного корня. Привести примеры.
19. Уравнение х2 = а и его корни. Привести примеры.
20. Свойства квадратных корней. Привести пример.

Конспект урока по теме « Решение уравнений» (6 класс)

Цель урока: применять полученные знания при решении уравнений.

Тип урока: объяснение нового материала.

План урока:

    Выполнение заданий на упрощение выражений, заполнение таблицы и узнавание способа действия при решении уравнений.

    Через решение задач на взвешивание постановка проблемы решения новых уравнений.

    Запись алгоритма решения уравнений в конспект, в парах.

    Решение уравнений по алгоритму. Отработка только переноса слагаемых из одной части уравнения в другую, сильные учащиеся решают уравнение до конца и в конце урока защищают решение.

Ход урока:

Упростить выражение:

Г

Заметим, сумма противоположных слагаемых равна 0.

    Решить задачу.

На одной чаше весов 5 буханок хлеба, на другой 1 такая буханка и гири в 5 кг, 2 кг и 1 кг. Определить вес 1 буханки хлеба.

Решение:

Пусть x кг – вес 1 буханки хлеба,

5 x кг – вес 5 таких буханок хлеба.

Можно составить уравнение: 5 x = x +8

Вычтем из обеих частей уравнения по x (снимем с обеих чашек весов по 1 буханке хлеба).

Можно к обеим частям уравнения прибавлять одно и то же числ о.

Получим 5 x- x = x- x +8.

Но x - x= 0, значит 5 x - x = 8.

Это уравнение можно получить из данного, если слагаемое x перенести из правой части в левую, изменив его знак на противоположный.

Упрощая левую часть уравнения 5 x - x = 8, получим 4 x= 8.

Разделим на коэффициент при переменной обе части уравнения

Можно обе части уравнения умножать (делить) на одно и то же число (кроме 0).

Число 2 и есть уравнения 5 x = x +8 , так как 52=2+8.

Записать свойства уравнений в конспект.

3.Алгоритм решения уравнений.

1) слагаемые, содержащие переменную, перенести в левую часть уравнения, а числа – в его правую часть, не забывая при переносе менять знаки на противоположные;

2) привести подобные слагаемые в левой и правой частях уравнения;

3) разделить число в правой части уравнения на коэффициент при переменной.

Работа с правилом (ученики в парах рассказывают друг другу правило по карточке на слайде)

1) слагаемые, содержащие ………….., перенести в левую часть уравнения, а …….. – в его правую часть, не забывая при переносе …….. знаки на …………..;

2) привести ………. слагаемые в левой и правой частях уравнения;

3) …........... число в правой части уравнения на ……………. при переменной.

Немного истории.

Первый прием преобразования уравнений описал знаменитый арабский математик Мухаммед аль-Хорезми, живший в Хорезми и в Багдаде на рубеже IX – X вв. Одно из главных его сочинений в переводе с арабского означает «Книга о восстановлении и противопоставлении». Перенося члены уравнения из одной части в другую, мы в одной части их «уничтожаем», но зато в другой «восстанавливаем», меняя при этом их знаки на противоположные. Восстановление – по-арабски аль-джебр. От этого слова и произошло название – алгебра. Алгебра, которую вы будете изучать, возникла и развивалась много веков тому назад именно как наука о решении уравнений.

    Решение уравнений

Учащиеся с помощью слайдов разбирают решение уравнений и записывают решение в тетрадь.

1) 3x -12 = 0

    3x – 2 = 10

3) 2x – 2 = 10 - x


    Решение уравнений с выбором ответа

1) 5x – 2 = 18

2) 7x = x + 24

В. 7x – x = 24

    2x – 4 = 6x – 20

А. 2x - 6x = -20 + 4

Б. 6x – 2x = 4-20

В. 2x – 6x = 20 +4

    3x + 9 = x + 9

А. 3x + x = 9 + 9

Б. 3x – x = 9 – 9

В. 9 – 9 = x – 3x

Группе более сильных учащихся предлагается решить уравнения до конца и защитить свое решение.

Ответы: 4, 4, 4, 0.

    Найти ошибку

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно