Виды парабол и их графики. Функции и графики

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    График функции – это наглядное представление поведения некоторой функции на координатной плоскости. Графики помогают понять различные аспекты функции, которые невозможно определить по самой функции. Можно построить графики множества функций, причем каждая из них будет задана определенной формулой. График любой функции строится по определенному алгоритму (если вы забыли точный процесс построения графика конкретной функции).

    Шаги

    Построение графика линейной функции

      Определите, является ли функция линейной. Линейная функция задается формулой вида F (x) = k x + b {\displaystyle F(x)=kx+b} или y = k x + b {\displaystyle y=kx+b} (например, ), а ее график представляет собой прямую. Таким образом, формула включает одну переменную и одну константу (постоянную) без каких-либо показателей степеней, знаков корня и тому подобного. Если дана функция аналогичного вида, построить график такой функции довольно просто. Вот другие примеры линейных функций:

      Воспользуйтесь константой, чтобы отметить точку на оси Y. Константа (b) является координатой «у» точки пересечения графика с осью Y. То есть это точка, координата «х» которой равна 0. Таким образом, если в формулу подставить х = 0, то у = b (константе). В нашем примере y = 2 x + 5 {\displaystyle y=2x+5} константа равна 5, то есть точка пересечения с осью Y имеет координаты (0,5). Нанесите эту точку на координатную плоскость.

      Найдите угловой коэффициент прямой. Он равен множителю при переменной. В нашем примере y = 2 x + 5 {\displaystyle y=2x+5} при переменной «х» находится множитель 2; таким образом, угловой коэффициент равен 2. Угловой коэффициент определяет угол наклона прямой к оси X, то есть чем больше угловой коэффициент, тем быстрее возрастает или убывает функция.

      Запишите угловой коэффициент в виде дроби. Угловой коэффициент равен тангенсу угла наклона, то есть отношению вертикального расстояния (между двумя точками на прямой) к горизонтальному расстоянию (между этими же точками). В нашем примере угловой коэффициент равен 2, поэтому можно заявить, что вертикальное расстояние равно 2, а горизонтальное расстояние равно 1. Запишите это в виде дроби: 2 1 {\displaystyle {\frac {2}{1}}} .

      • Если угловой коэффициент отрицательный, функция убывает.
    1. От точки пересечения прямой с осью Y нанесите вторую точку, используя вертикальное и горизонтальное расстояния. График линейной функции можно построить по двум точкам. В нашем примере точка пересечения с осью Y имеет координаты (0,5); от этой точки передвиньтесь на 2 деления вверх, а затем на 1 деление вправо. Отметьте точку; она будет иметь координаты (1,7). Теперь можно провести прямую.

      При помощи линейки проведите прямую через две точки. Во избежание ошибок найдите третью точку, но в большинстве случаев график можно построить по двум точкам. Таким образом, вы построили график линейной функции.

    Нанесение точек на координатную плоскость

      Определите функцию. Функция обозначается как f(x). Все возможные значения переменной «у» называются областью значений функции, а все возможные значения переменной «х» называются областью определения функции. Например, рассмотрим функцию y = x+2, а именно f(x) = x+2.

      Нарисуйте две пересекающиеся перпендикулярные прямые. Горизонтальная прямая – это ось Х. Вертикальная прямая – это ось Y.

      Обозначьте оси координат. Разбейте каждую ось на равные отрезки и пронумеруйте их. Точка пересечения осей – это 0. Для оси Х: справа (от 0) наносятся положительные числа, а слева отрицательные. Для оси Y: сверху (от 0) наносятся положительные числа, а снизу отрицательные.

      Найдите значения «у» по значениям «х». В нашем примере f(x) = х+2. Подставьте в эту формулу определенные значения «х», чтобы вычислить соответствующие значения «у». Если дана сложная функция, упростите ее, обособив «у» на одной стороне уравнения.

      • -1: -1 + 2 = 1
      • 0: 0 +2 = 2
      • 1: 1 + 2 = 3
    1. Нанесите точки на координатную плоскость. Для каждой пары координат сделайте следующее: найдите соответствующее значение на оси Х и проведите вертикальную линию (пунктиром); найдите соответствующее значение на оси Y и проведите горизонтальную линию (пунктиром). Обозначьте точку пересечения двух пунктирных линий; таким образом, вы нанесли точку графика.

      Сотрите пунктирные линии. Сделайте это после нанесения на координатную плоскость всех точек графика. Примечание: график функции f(х) = х представляет собой прямую, проходящую через центр координат [точку с координатами (0,0)]; график f(х) = х + 2 – это прямая, параллельная прямой f(х) = х, но сдвинутая на две единицы вверх и поэтому проходящая через точку с координатами (0,2) (потому что постоянная равна 2).

    Построение графика сложной функции

      Найдите нули функции. Нули функции – это значения переменной «х», при которых у = 0, то есть это точки пересечения графика с осью Х. Имейте в виду, что нули имеют не все функции, но это первый шаг процесса построения графика любой функции. Чтобы найти нули функции, приравняйте ее к нулю. Например:

      Найдите и отметьте горизонтальные асимптоты. Асимптота – это прямая, к которой график функции приближается, но никогда не пересекает ее (то есть в этой области функция не определена, например, при делении на 0). Асимптоту отметьте пунктирной линией. Если переменная «х» находится в знаменателе дроби (например, y = 1 4 − x 2 {\displaystyle y={\frac {1}{4-x^{2}}}} ), приравняйте знаменатель к нулю и найдите «х». В полученных значения переменной «х» функция не определена (в нашем примере проведите пунктирные линии через х = 2 и х = -2), потому что на 0 делить нельзя. Но асимптоты существуют не только в случаях, когда функция содержит дробное выражение. Поэтому рекомендуется пользоваться здравым смыслом:

    1. Найдите координаты нескольких точек и нанесите их на координатную плоскость. Просто выберите несколько значений «х» и подставьте их в функцию, чтобы найти соответствующие значения «у». Затем нанесите точки на координатную плоскость. Чем сложнее функция, тем больше точек нужно найти и нанести. В большинстве случаев подставьте х = -1; х = 0; х = 1, но если функция сложная, найдите по три точки с каждой стороны от начала координат.

      • В случае функции y = 5 x 2 + 6 {\displaystyle y=5x^{2}+6} подставьте следующие значения «х»: -1, 0, 1, -2, 2, -10, 10. Вы получите достаточное количество точек.
      • Выбирайте значения «х» с умом. В нашем примере несложно понять, что отрицательный знак не играет роли: значение «у» при х = 10 и при х = -10 будет одним и тем же.
    2. Если вы не знаете, что делать, начните с подстановки в функцию различных значений «х», чтобы найти значения «у» (и, следовательно, координаты точек). Теоретически график функции можно построить при помощи только этого метода (если, конечно, подставить бесконечное разнообразие значений «х»).

    В этой статье мы рассмотрим линейную функцию , график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.

    Линейной функцией называется функция вида

    В уравнении функции число , которое мы умножаем на называется коэффициентом наклона.

    Например, в уравнении функции ;

    в уравнении функции ;

    в уравнении функции ;

    в уравнении функции .

    Графиком линейной функции является прямая линия.

    1 . Чтобы построить график функции , нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

    Например, чтобы построить график функции , удобно взять и , тогда ординаты эти точек будут равны и .

    Получим точки А(0;2) и В(3;3). Соединим их и получим график функции :


    2 . В уравнении функции коэффициент отвечает за наклон графика функции:

    Title="k>0">

    Коэффициент отвечает за сдвиг графика вдоль оси :

    Title="b>0">

    На рисунке ниже изображены графики функций ; ;


    Заметим, что во всех этих функциях коэффициент больше нуля вправо . Причем, чем больше значение , тем круче идет прямая.

    Во всех функциях - и мы видим, что все графики пересекают ось OY в точке (0;3)

    Теперь рассмотрим графики функций ; ;


    На этот раз во всех функциях коэффициент меньше нуля , и все графики функций наклонены влево .

    Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

    Рассмотрим графики функций ; ;

    Теперь во всех уравнениях функций коэффициенты равны. И мы получили три параллельные прямые.

    Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

    График функции (b=3) пересекает ось OY в точке (0;3)

    График функции (b=0) пересекает ось OY в точке (0;0) - начале координат.

    График функции (b=-2) пересекает ось OY в точке (0;-2)

    Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции .

    Если k<0 и b>0 , то график функции имеет вид:

    Если k>0 и b>0 , то график функции имеет вид:

    Если k>0 и b<0 , то график функции имеет вид:

    Если k<0 и b<0 , то график функции имеет вид:

    Если k=0 , то функция превращается в функцию и ее график имеет вид:

    Ординаты всех точек графика функции равны

    Если b=0 , то график функции проходит через начало координат:

    Это график прямой пропорциональности .

    3 . Отдельно отмечу график уравнения . График этого уравнения представляет собой прямую линию, параллельую оси все точки которой имеют абсциссу .

    Например, график уравнения выглядит так:

    Внимание! Уравнение не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует .

    4 . Условие параллельности двух прямых:

    График функции параллелен графику функции , если

    5. Условие перпендикулярности двух прямых:

    График функции перпендикулярен графику функции , если или

    6 . Точки пересечения графика функции с осями координат.

    С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

    С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда . То есть точка пересечения с осью OX имеет координаты (;0):


    Рассмотрим решение задач.

    1 . Постройте график функции , если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.

    В уравнении функции два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.

    а) Из того, что график функции параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид

    б) Нам осталось найти b. Известно, что график функции проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:

    отсюда b=-10

    Таким образом, нам надо построить график функции

    Точка А(-3;2) нам известна, возьмем точку B(0;-10)

    Поставим эти точки в координатной плоскости и соединим их прямой:

    2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).

    Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой . То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.

    Подставим координаты каждой точки в уравнение и получим систему линейных уравнений.

    Вычтем из второго уравнения системы первое, и получим . Подставим значение k в первое уравнение системы, и получим b=-2.

    Итак, уравнение прямой .

    3 . Постройте график уравнения

    Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть каждого множителя.

    Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:

    Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения :


    4 . Постройте график функции , если он перпендикулярен прямой и проходит через точку М(-1;2)

    Мы не будем строить график, только найдем уравнение прямой.

    а) Так как график функции , если он перпендикулярен прямой , следовательно , отсюда . То есть уравнение функции имеет вид

    б) Мы знаем, что график функции проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:

    Отсюда .

    Следовательно, наша функция имеет вид: .

    5 . Постройте график функции

    Упростим выражение, стоящее в правой части уравнения функции.

    Важно! Прежде чем упрощать выражение, найдем его ОДЗ.

    Знаменатель дроби не может быть равен нулю, поэтому title="x1">, title="x-1">.

    Тогда наша функция принимает вид:

    Title="delim{lbrace}{matrix{3}{1}{{y=x+2} {x1} {x-1}}}{ }">

    То есть нам надо построить график функции и выколоть на нем две точки: с абсциссами x=1 и x=-1:


    Национальный научно-исследовательский университет

    Кафедра прикладной геологии

    Реферат по высшей математике

    На тему: «Основные элементарные функции,

    их свойства и графики»

    Выполнил:

    Проверил:

    преподаватель

    Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

    Сформулируем основные свойства показательной функции:

    1. Область определения - множество (R) всех действительных чисел.

    2. Область значений - множество (R+) всех положительных действительных чисел.

    3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

    4. Является функцией общего вида.

    , на интервале xÎ [-3;3]
    , на интервале xÎ [-3;3]

    Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

    Степенная функция у=х²

    1. D(x)=R – функция определена на все числовой оси;

    2. E(y)= и возрастает на промежутке

    Степенная функция у=х³

    1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

    2. D(x)=R – функция определена на все числовой оси;

    3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

    4. При х=0 у=0 – функция проходит через начало координат O(0;0).

    5. Функция возрастает на всей области определения.

    6. Функция является нечетной (симметрична относительно начала координат).


    , на интервале xÎ [-3;3]

    В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

    Степенная функция с целым отрицательным показателем:

    Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

    1. D(x)=(-∞;0)U(0;∞) для любого n;

    2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

    3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

    4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

    5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.


    , на интервале xÎ [-3;3]

    Степенная функция с дробным показателем

    Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

    1. D(x) ÎR, если n – нечетное число и D(x)=
    , на интервале xÎ
    , на интервале xÎ [-3;3]

    Логарифмическая функция у = log a x обладает следующими свойствами:

    1. Область определения D(x)Î (0; + ∞).

    2. Область значений E(y) Î (- ∞; + ∞)

    3. Функция ни четная, ни нечетная (общего вида).

    4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

    График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.


    ; на интервале xÎ
    ; на интервале xÎ

    Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

    Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

    Функция y = sin (х).

    1. Область определения D(x) ÎR.

    2. Область значений E(y) Î [ - 1; 1].

    3. Функция периодическая; основной период равен 2π.

    4. Функция нечетная.

    5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

    График функции у = sin (х) изображен на рисунке 11.