Составить уравнение высоты треугольника abc. Дано координаты вершин треугольника

1. Уравнение сторон АВ и ВС и их угловые коэффициенты.
В задании даны координаты точек, через которые проходят эти прямые, поэтому воспользуемся уравнением прямой, проходящей через две заданные точки $$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$$ подставляем и получаем уравнения
уравнение прямой AB $$\frac{x+6}{6+6}=\frac{y-8}{-1-8} => y = -\frac{3}{4}x + \frac{7}{2}$$ угловой коэффициент прямой AB равен \(k_{AB} = -\frac{3}{4}\)
уравнение прямой BC $$\frac{x-4}{6-4}=\frac{y-13}{-1-13} => y = -7x + 41$$ угловой коэффициент прямой BC равен \(k_{BC} = -7\)


2. Угол В в радианах с точностью до двух знаков
Угол B - угол между прямыми AB и BC, который рассчитывается по формуле $$tg\phi=|\frac{k_2-k_1}{1+k_2*k_1}|$$подставляем значения угловых коэффициентов этих прямых и получаем $$tg\phi=|\frac{-7+\frac{3}{4}}{1+7*\frac{3}{4}}| = 1 => \phi = \frac{\pi}{4} \approx 0.79$$
3.Длину стороны АВ
Длина стороны AB рассчитывается как расстояние между точками и равна \(d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\) => $$d_{AB} = \sqrt{(6+6)^2+(-1-8)^2} = 15$$
4.Уравнение высоты CD и ее длину.
Уравнение высоты будем находить по формуле прямой проходящей через заданную точку С(4;13) в заданном направлении - перпендикулярно прямой AB по формуле \(y-y_0=k(x-x_0)\). Найдем угловой коэффициент высоты \(k_{CD}\) воспользовавшись свойством перпендикулярных прямых \(k_1=-\frac{1}{k_2}\) получим $$k_{CD}= -\frac{1}{k_{AB}} = -\frac{1}{-\frac{3}{4}} = \frac{4}{3}$$ Подставляем в уравнение прямой, получаем $$y - 13 = \frac{4}{3}(x-4) => y = \frac{4}{3}x+\frac{23}{3}$$ Длину высоты будем искать как расстояние от точки С(4;13) до прямой AB по формуле $$d = \frac{Ax_0+By_0+C}{\sqrt{A^2+B^2}}$$ в числителе уравнение прямой AB, приведем его к этому виду \(y = -\frac{3}{4}x + \frac{7}{2} => 4y+3x-14 = 0\) , подставляем полученное уравнение и координаты точки в формулу $$d = \frac{4*13+3*4-14 }{\sqrt{4^2+3^2}} = \frac{50}{5} =10$$


5. Уравнение медианы АЕ и координаты точки К пересечение этой медианы с высотой CD.
Уравнение медианы будем искать как уравнение прямой, проходящей через две заданные точки А(-6;8) и E , где точка E - середина между точками B и C и ее координаты находятся по формуле \(E(\frac{x_2+x_1}{2};\frac{y_2+y_1}{2})\) подставляем координаты точек \(E(\frac{6+4}{2};\frac{-1+13}{2})\) => \(E(5; 6)\), тогда уравнение медианы AE буде следующее $$\frac{x+6}{5+6}=\frac{y-8}{6-8} => y = -\frac{2}{11}x + \frac{76}{11}$$Найдем координаты точки пересечения высот и медианы, т.е. найдем их общую точку Для этого составим систему уравнение $$\begin{cases}y = -\frac{2}{11}x + \frac{76}{11}\\y = \frac{4}{3}x+\frac{23}{3}\end{cases}=>\begin{cases}11y = -2x +76\\3y = 4x+23\end{cases}=>$$$$\begin{cases}22y = -4x +152\\3y = 4x+23\end{cases}=> \begin{cases}25y =175\\3y = 4x+23\end{cases}=> $$$$\begin{cases}y =7\\ x=-\frac{1}{2}\end{cases}$$ Координаты точки пересечения \(K(-\frac{1}{2};7)\)


6.Уравнение прямой что проходит через точку К параллельно к стороне АВ.
Если прямая параллельны, то их угловые коэффициенты равны, т.е. \(k_{AB}=k_{K} = -\frac{3}{4}\) , также известны координаты точки \(K(-\frac{1}{2};7)\), т.е. для нахождения уравнения прямой применим формулу уравнения прямой, проходящей через заданную точку в заданном направлении \(y - y_0=k(x-x_0)\), подставляем данные и получаем $$y - 7= -\frac{3}{4}(x-\frac{1}{2}) => y = -\frac{3}{4}x + \frac{53}{8}$$


8. Координаты точки М которая симметрична точке А относительно прямой CD.
Точка M лежит на прямой AB, т.к. CD - высота к этой стороне. Найдем точку пересечения CD и AB для этого решим систему уравнений $$\begin{cases}y = \frac{4}{3}x+\frac{23}{3}\\y = -\frac{3}{4}x + \frac{7}{2}\end{cases} =>\begin{cases}3y = 4x+23\\4y =-3x + 14\end{cases} => $$$$\begin{cases}12y = 16x+92\\12y =-9x + 42\end{cases} =>
\begin{cases}0= 25x+50\\12y =-9x + 42\end{cases} => $$$$\begin{cases}x=-2\\y=5 \end{cases}$$ Координаты точки D(-2;5). По условию AD=DK, это расстояние между точками находится по формуле Пифагора \(d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\), где AD и DK - гипотенузы равных прямоугольных треугольников, а \(Δx =x_2-x_1\) и \(Δy=y_2-y_1\) - катеты этих треугольников, т.е. найдем катеты найдем и координаты точки M. \(Δx=x_D-x_A = -2+6=4\), а \(Δy=y_D-y_A = 5-8=-3\), тогда координаты точки M будут равны \(x_M-x_D = Δx => x_D +Δx =-2+4=2 \), а \(y_M-y_D = Δy => y_D +Δy =5-3=2 \), получили, что координаты точки \(M(2;2)\)

В задачах 1 - 20 даны вершины треугольника АВС.
Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) Внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник АВС.

Длина сторон треугольника:
|AB| = 15
|AC| = 11.18
|BC| = 14.14
Расстояние d от точки M: d = 10
Даны координаты вершин треугольника: A(-5,2), B(7,-7), C(5,7).
2) Длина сторон треугольника
Расстояние d между точками M 1 (x 1 ; y 1) и M 2 (x 2 ; y 2) определяется по формуле:



8) Уравнение прямой
Прямая, проходящая через точки A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2), представляется уравнениями:

Уравнение прямой AB


или

или
y = -3 / 4 x -7 / 4 или 4y + 3x +7 = 0
Уравнение прямой AC
Каноническое уравнение прямой:

или

или
y = 1 / 2 x + 9 / 2 или 2y -x - 9 = 0
Уравнение прямой BC
Каноническое уравнение прямой:

или

или
y = -7x + 42 или y + 7x - 42 = 0
3) Угол между прямыми
Уравнение прямой AB:y = -3 / 4 x -7 / 4
Уравнение прямой AC:y = 1 / 2 x + 9 / 2
Угол φ между двумя прямыми, заданными уравнениями с угловыми коэффициентами y = k 1 x + b 1 и y 2 = k 2 x + b 2 , вычисляется по формуле:

Угловые коэффициенты данных прямых равны -3 / 4 и 1 / 2 . Воспользуемся формулой, причем ее правую часть берем по модулю:

tg φ = 2
φ = arctg(2) = 63.44 0 или 1.107 рад.
9) Уравнение высоты через вершину C
Прямая, проходящая через точку N 0 (x 0 ;y 0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:



Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k 1 прямой AB.
Уравнение AB: y = -3 / 4 x -7 / 4 , т.е. k 1 = -3 / 4
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k 1 *k = -1.
Подставляя вместо k 1 угловой коэффициент данной прямой, получим:
-3 / 4 k = -1, откуда k = 4 / 3
Так как перпендикуляр проходит через точку C(5,7) и имеет k = 4 / 3 ,то будем искать его уравнение в виде: y-y 0 = k(x-x 0).
Подставляя x 0 = 5, k = 4 / 3 , y 0 = 7 получим:
y-7 = 4 / 3 (x-5)
или
y = 4 / 3 x + 1 / 3 или 3y -4x - 1 = 0
Найдем точку пересечения с прямой AB:
Имеем систему из двух уравнений:
4y + 3x +7 = 0
3y -4x - 1 = 0
Из первого уравнения выражаем y и подставим во второе уравнение.
Получаем:
x = -1
y = -1
D(-1;-1)
9) Длина высоты треугольника, проведенной из вершины C
Расстояние d от точки M 1 (x 1 ;y 1) до прямой Ax + By + С = 0 равно абсолютному значению величины:

Найдем расстояние между точкой C(5;7) и прямой AB (4y + 3x +7 = 0)


Длину высоты можно вычислить и по другой формуле, как расстояние между точкой C(5;7) и точкой D(-1;-1).
Расстояние между двумя точками выражается через координаты формулой:

5) уравнение окружности, для которой высота CD есть диаметр;
Уравнение окружности радиуса R с центром в точке E(a;b) имеет вид:
(x-a) 2 + (y-b) 2 = R 2
Так как CD является диаметром искомой окружности, то ее центр Е есть середина отрезка CD. Воспользовавшись формулами деления отрезка пополам, получим:


Следовательно, Е(2;3) и R = CD / 2 = 5. Использую формулу, получаем уравнение искомой окружности: (x-2) 2 + (y-3) 2 = 25

6) система линейных неравенств, определяющих треугольник АВС.
Уравнение прямой AB: y = -3 / 4 x -7 / 4
Уравнение прямой AC: y = 1 / 2 x + 9 / 2
Уравнение прямой BC: y = -7x + 42

Задание 1

57. даны вершины треугольника АВС. Найти

) длину стороны АВ;

) уравнения сторон АВ и АС и их угловые коэффициенты;

) внутренний угол А;

) уравнение медианы проведенной ихз вершины В;

) уравнение высоты СD и ее длину;

)уравнение окружности для которой высота СD есть диаметр и точки пересечения этой окружности со стороной АС;

) уравнение биссектрисы внутреннего угла А;

) площадь треугольника АВС;

) систему линейных неравенств, определяющих треугольник АВС.

Сделать чертеж.

А(7, 9); В(-2, -3); С(-7, 7)

Решение:

1) Найдем длину вектора

= (хb - xa)2 + (yb - ya)2 = ((-2)-7)2 + (-3 - 9)2 = 92 + 122 = 225

= = 15 - длина стороны АВ

2) Найдем уравнение стороны АВ

Уравнение прямой, проходящей через точки

А(ха; ув) и В(ха; ув) в общем виде

Подставим координаты точек А и В в это уравнение прямой

=

=

=

SAB = (- 3, - 4) называется направляющим вектором прямой АВ. Этот вектор параллелен прямой АВ.

4(х - 7) = - 3(у - 9)

4х + 28 = - 3у + 27

4х + 3у + 1 = 0 - уравнение прямой АВ

Если уравнение записать в виде: у = х - то можно выделить его угловой коэффициент: k1 =4/3

Вектор NAB = (-4, 3) называется нормальным вектором прямой AB.

Вектор N AB = (-4, 3) перпендикулярен прямой AB.

Аналогично найдем уравнение стороны АС

=

=

=

S = (- 7, - 1) - направляющий вектор стороны АС

(х - 7) = - 7(у - 9)

х + 7 = - 7у + 63

х + 7у - 56 = 0 - уравнение стороны АС

у = = х + 8 откуда угловой коэффициент k2 = 1/7

Вектор N AC = (- 1, 7) - нормальный вектор прямой AC.

Вектор N AC = (- 1, 7) перпендикулярен прямой AC.

3) Найдем угол А

Запишем формулу скалярного произведения векторов и

* = * cos ∟A

Для нахождения угла А достаточно найти косинус данного угла. Из предыдущей формулы запишем выражение для косинуса угла А

cos ∟A =

Находим скалярное произведение векторов и

= (хв - ха; ув - уа) = (- 2 - 7; - 3 - 9) = (-9, -12)

= (хс - ха; ус - уа) = (- 7 - 7; 7 - 9) = (-14; -2)

9*(-14) + (-12)*(-2) = 150

Длина вектора = 15 (нашли ранее)

Найдем длину вектора

= (хС - xа)2 + (yс - ya)2 = (-14)2 + (-2)2 = 200

= = 14,14 - длина стороны АС

Тогда cos ∟A = = 0,7072

∟A = 450

4) Найдем уравнение медианы ВЕ, проведенной из точки В на сторону АС

Уравнение медианы в общем виде

Теперь необходимо найти направляющий вектор прямой ВЕ.

Достроим треугольник АВС до параллелограмма АВСD, таким образом, чтобы сторона АС являлась его диагональю. Диагонали в параллелограмме делятся пополам, т. е. АЕ = ЕС. Следовательно, точка E лежит на прямой BF.

В качестве направляющего вектора прямой BE можно принять вектор , который и найдем.

= +

= (хc - хb; уc - уb) = (- 7- (-2); 7 - (-3)) = (-5. 10)

= + = (-5 + 9; 10 + 12) = (4; 22)

Подставим в уравнение

Подставим координаты точки С (-7; 7)

(х + 7) = 2(у - 7)

х + 77 = 2у - 14

х - 2у + 91 = 0 - уравнение медианы ВЕ

Так как точка Е - середина стороны АС, то ее координаты

хе = (ха + хс)/2 = (7 - 7)/2 = 0

уе = (уа + ус)/2 = (9 + 7)/2 = 8

Координаты точки Е (0; 8)

5) Найдем уравнение высоты CD и ее длину

Уравнение в общем виде

Необходимо найти направляющий вектор прямой СD

Прямая СD перпендикулярна прямой АВ, следовательно, направляющий вектор прямой СD параллелен нормальному вектору прямой АВ

CDAB

То есть в качестве направляющего вектора прямой CD можно принять нормальный вектор прямой АВ

Вектор AB найден ранее: AB (-4, 3)

Подставим координаты точки С, (- 7; 7)

(х + 7) = - 4(у - 7)

х + 21 = - 4у + 28

х + 4у - 7 = 0 - уравнение высоты С D

Координаты точки D:

Точка D принадлежит прямой АВ, следовательно, координаты точки D(xd. yd) должны удовлетворять уравнению прямой АВ, найденному ранее

Точка D принадлежит прямой CD, следовательно, координаты точки D(xd. yd) должны удовлетворять уравнению прямой CD,

Составим систему уравнений на основе этого

Координаты D(1; 1)

Найдем длину прямой CD

= (хd - xc)2 + (yd - yc)2 = (1 + 7)2 + (1 - 7)2 = 64 +36 = 100

= = 10 - длина прямой СD

6) Найдем уравнение окружности диаметром СD

Очевидно, что прямая СD проходит через начало координат так как ее уравнение -3х - 4у = 0, следовательно, уравнение окружности можно записать в виде

(х - а)2 + (у - b)2 = R2 - уравнение окружности с центром в точке (а; b)

Здесь R = СD/2 = 10 /2 = 5

(х - а)2 + (у - b)2 = 25

Центр окружности О (а; b) лежит на середине отрезка СD. Найдем его координаты:

х0 = a = = = - 3;

y0 = b = = = 4

Уравнение окружности:

(х + 3)2 + (у - 4)2 = 25

Найдем пересечение этой окружности со стороной АС:

точка К принадлежит одновременно окружности и прямой АС

х + 7у - 56 = 0 - уравнение прямой АС, найденной ранее.

Составим систему

Таким образом, получили квадратное уравнение

у2 - 750у +2800 = 0

у2 - 15у + 56 = 0

=

у1 = 8

у2 = 7 - точка, соответствующая точке С

следовательно координаты точки Н:

х = 7*8 - 56 = 0

Пример решения некоторых заданий из типовой работы «Аналитическая геометрия на плоскости»

Даны вершины ,
,
треугольника АВС. Найти:

    Уравнения всех сторон треугольника;

    Систему линейных неравенств, определяющих треугольник АВС ;

    Уравнения высоты, медианы и биссектрисы треугольника, проведенных из вершины А ;

    Точку пересечения высот треугольника;

    Точку пересечения медиан треугольника;

    Длину высоты, опущенной на сторону АВ ;

    Угол А ;

    Сделать чертеж.

Пусть вершины треугольника имеют координаты: А (1; 4), В (5; 3), С (3; 6). Сразу нарисуем чертеж:

1. Чтобы выписать уравнения всех сторон треугольника, воспользуемся уравнением прямой, проходящей через две заданные точки с координатами (x 0 , y 0 ) и (x 1 , y 1 ):

=

Таким образом, подставляя вместо (x 0 , y 0 ) координаты точки А , а вместо (x 1 , y 1 ) координаты точки В , мы получим уравнение прямой АВ :

Полученное уравнение будет уравнением прямой АВ , записанным в общей форме. Аналогично находим уравнение прямой АС :

И так же уравнение прямой ВС :

2. Заметим, что множество точек треугольника АВС представляет собой пересечение трех полуплоскостей, причем каждую полуплоскость можно задать с помощью линейного неравенства. Если мы возьмем уравнение любой из сторон ∆АВС , например АВ , тогда неравенства

и

задают точки, лежащие по разные стороны от прямой АВ . Нам нужно выбрать ту полуплоскость, где лежит точка С. Подставим ее координаты в оба неравенства:

Правильным будет второе неравенство, значит, нужные точки определяются неравенством

.

Аналогично поступаем с прямой ВС, ее уравнение
. В качестве пробной используем точку А (1, 1):

значит, нужное неравенство имеет вид:

.

Если проверим прямую АС (пробная точка В), то получим:

значит, нужное неравенство будет иметь вид

Окончательно получаем систему неравенств:

Знаки «≤», «≥» означают, что точки, лежащие на сторонах треугольника, тоже включены во множество точек, составляющих треугольник АВС .

3. а) Для того, чтобы найти уравнение высоты, опущенной из вершины А на сторону ВС , рассмотрим уравнение стороны ВС :
. Вектор с координатами
перпендикулярен сторонеВС и, значит, параллелен высоте. Запишем уравнение прямой, проходящей через точку А параллельно вектору
:

Это уравнение высоты, опущенной из т. А на сторону ВС .

б) Найдем координаты середины стороны ВС по формулам:

Здесь
– это координаты т.В , а
– координаты т.С . Подставим и получим:

Прямая, проходящая через эту точку и точку А является искомой медианой:

в) Уравнение биссектрисы мы будем искать, исходя из того, что в равнобедренном треугольнике высота, медиана и биссектриса, опущенные из одной вершины на основание треугольника, равны. Найдем два вектора
и
и их длины:


Тогда вектор
имеет такое же направление, что и вектор
, а его длина
Точно так же единичный вектор
совпадает по направлению с вектором
Сумма векторов

есть вектор, который совпадает по направлению с биссектрисой угла А . Таким образом, уравнение искомой биссектрисы можно записать виде:

4) Уравнение одной из высот мы уже построили. Построим уравнение еще одной высоты, например, из вершины В . Сторона АС задается уравнением
Значит, вектор
перпендикуляренАС , и, тем самым, параллелен искомой высоте. Тогда уравнение прямой, проходящей через вершину В в направлении вектора
(т. е. перпендикулярноАС ), имеет вид:

Известно, что высоты треугольника пересекаются в одной точке. В частности, эта точка является пересечением найденных высот, т.е. решением системы уравнений:

- координаты этой точки.

5. Середина АВ имеет координаты
. Запишем уравнение медианы к сторонеАВ. Эта прямая проходит через точки с координатами (3, 2) и (3, 6), значит, ее уравнение имеет вид:

Заметим, что ноль в знаменателе дроби в записи уравнения прямой означает, что эта прямая проходит параллельно оси ординат.

Чтобы найти точку пересечения медиан достаточно решить систему уравнений:

Точка пересечения медиан треугольника имеет координаты
.

6. Длина высоты, опущенной на сторону АВ, равна расстоянию от точки С до прямой АВ с уравнением
и находится по формуле:

7. Косинус угла А можно найти по формуле косинуса угла между векторами и, который равен отношению скалярного произведения этих векторов к произведению их длин:

.

Задача 1 . Даны координаты вершин треугольника АВС: А(4; 3), В(16;-6), С(20; 16). Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и ВС и их угловые коэффициенты; 3) угол В в радианах с точностью до двух знаков; 4) уравнение высоты СD и ее длину; 5) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой CD; 6) уравнение прямой, проходящей через точку К параллельно стороне АВ; 7) координаты точки М, расположенной симметрично точке А относительно прямой СD.

Решение:

1. Расстояние d между точками A(x 1 ,y 1) и B(x 2 ,y 2) определяется по формуле

Применяя (1), находим длину стороны АВ:

2. Уравнение прямой, проходящей через точки A(x 1 ,y 1) и B(x 2 ,y 2) имеет вид

(2)

Подставляя в (2) координаты точек А и В, получим уравнение стороны АВ:

Решив последнее уравнение относительно у, находим уравнение стороны АВ в виде уравнения прямой с угловым коэффициентом:

откуда

Подставив в (2) координаты точек В и С, получим уравнение прямой ВС:

Или

3. Известно, что тангенс угла между двумя прямыми, угловые коэффициенты которых соответственно равны и вычисляется по формуле

(3)

Искомый угол В образован прямыми АВ и ВС, угловые коэффициенты которых найдены: Применяя (3), получим

Или рад.

4. Уравнение прямой, проходящей через данную точку в заданном направлении, имеет вид

(4)

Высота CD перпендикулярна стороне АВ. Чтобы найти угловой коэффициент высоты CD, воспользуемся условием перпендикулярности прямых. Так как то Подставив в (4) координаты точки С и найденный угловой коэффициент высоты, получим

Чтобы найти длину высоты CD, определим сначала координаты точки D- точки пересечения прямых АВ и CD. Решая совместно систему:

находим т.е. D(8;0).

По формуле (1) находим длину высоты CD:

5. Чтобы найти уравнение медианы АЕ, определим сначала координаты точки Е, которая является серединой стороны ВС, применяя формулы деления отрезка на две равные части:

(5)

Следовательно,

Подставив в (2) координаты точек А и Е, находим уравнение медианы:

Чтобы найти координаты точки пересечения высоты CD и медианы АЕ, решим совместно систему уравнений

Находим .

6. Так как искомая прямая параллельна стороне АВ, то ее угловой коэффициент будет равен угловому коэффициенту прямой АВ. Подставив в (4) координаты найденной точки К и угловой коэффициент получим

3x + 4y – 49 = 0 (KF)

7. Так как прямая АВ перпендикулярна прямой CD, то искомая точка М, расположенная симметрично точке А относительно прямой CD, лежит на прямой АВ. Кроме того, точка D является серединой отрезка AM. Применяя формулы (5), находим координаты искомой точки М:

Треугольник ABC, высота CD, медиана АЕ, прямая KF и точка М построены в системе координат хОу на рис. 1.

Задача 2. Составить уравнение геометрического места точек, отношение расстояний которых до данной точки А(4; 0) и до данной прямой х=1 равно 2.

Решение :

В системе координат хОу построим точку А(4;0) и прямую х = 1. Пусть М(х;у) – произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую x = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то ее абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, В(1;у) (рис. 2).

По условию задачи |МА|: |МВ| = 2. Расстояния |МА| и |MB| находим по формуле (1) задачи 1:

Возведя в квадрат левую и правую части, получим

Полученное уравнение представляет собой гипербо­лу, у которой действительная полуось а = 2,а мнимая –

Определим фокусы гиперболы. Для гиперболы выполняется равенство Следовательно, и – фокусы гиперболы. Как видно, заданная точка А(4;0) является правым фокусом гиперболы.

Определим эксцентриситет полученной гиперболы:

Уравнения асимптот гиперболы имеют вид и . Следовательно, или и – асимптоты гиперболы. Прежде чем построить гиперболу, строим ее асимптоты.

Задача 3 . Составить уравнение геометрического места точек, равноудаленных от точки А(4; 3) и прямой у = 1. Полученное уравнение привести к простейшему виду.

Решение: Пусть М(х; у) - одна из точек искомого геометрического места точек. Опустим из точки М перпендикуляр MB на данную прямую у = 1 (рис. 3). Определим координаты точки В. Очевидно, что абсцисса точки В равна абсциссе точки М, а ордината точки В равна 1, т. е. В(х; 1). По условию задачи |МА|=|МВ|. Следовательно, для любой точки М(х;у), принадлежащей искомому геометрическому месту точек, справедливо равенство:

Полученное уравнение определяет параболу с вершиной в точке Чтобы уравнение параболы привести к простейшему виду, положим и y + 2 = Y тогда уравнение параболы принимает вид: